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Abstract

This paper explores the geometrical characteristics of degree-4 ver-
tices in flat-foldable rigid origami. Previous researchers have established
relationships between opposite sector angles, opposite folding angles, and
adjacent folding angles. However, their proofs tend to be complicated
and distant from the geometrical nature of the origami problem. We con-
structed a proof for the relationship between opposite folding angles that
seems to be simpler than proofs that appear in literature; moreover, we
proved a theorem, which appears without proof in literature, that may
reveal the nature of the mysterious half-angle parameters that appeared
in many equations in this field.
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Figure 1: A non-flat-foldable vertex with sector angles 30◦, 90◦, 30◦, 90◦, 30◦,
90◦ and creases M, V, M, V, M, V. The right image was created using the
Origami Simulator [Gha].

1 Define the Scenario

1.1 General Setting

Origami, as a term in daily life, refers to the Japanese art of folding paper.
Mathematically, we say that paper is a planar surface that does not stretch (or
compress), and origami is a 3D deformation of paper without intersection with
itself.

More specifically, in this paper (no pun intended), we are concerned about
rigid origami around one vertex. An origami is considered rigid if all facets are
flat polygons (which means that all creases bordering the facets are straight)
and the folding angles can vary continuously. The folding angle at a crease
describes how much the paper is bent at the crease. A zero folding angle means
the paper is unfolded at this crease. Moreover, if the paper extends indefinitely,
it will divide the 3D space into two parts. If we observe from a specific side,
some creases will look like valleys, while others will look like mountains. And,
if we observe from the other side, the mountain will look like a valley and vice
versa.

Though folding angles can vary continuously in rigid origami, in some cases,
they may only vary within a limited range. We say an origami is flat-foldable if
all of its folding angles can be ±π simultaneously, i.e., the paper is folded to a
flat state. An example of a non-flat-foldable origami vertex is shown in Figure
1.

Lastly, a degree-4 vertex is a point where four creases meet. It is well-known
that a flat-foldable rigid origami is only possible if the number of creases at the
vertex is an even number no less than 4 [Hul94], so the degree-4 vertex is the
simplest possible flat-foldable rigid origami. The relationship among the folding
angles of these four creases at the vertex is the subject of our study.

1.2 Notations and formal definitions

More precisely, for a piece of paper K ⊂ R2, an origami is a function f : K → R3,
that is (a) continuous and (b) a piecewise isometric. (K is used here, because,
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Figure 2: Annotated vertex enclosed by a unit sphere. (All spherical images
were made using GeoGebra [Hoh].)

P is occupied by something that will appear later, and kami means paper in
Japanese.) An isometry is a bijection such that, for any line segment l ⊂ K,
f(l) and l have the same length. Then we define the crease pattern C of the
rigid origami f to be the subset of K where f is non-differentiable. Other people
have proved that under these conditions, C must be a straight-line embedding
of a planar graph on K [Rob78; Hul20].

Figure 2 shows an example of degree-4 flat-foldable rigid origami with labels
we will use in this paper. We place the vertex at the center of a unit sphere,
and, thereby, creases and sectors can be mapped to their intersections with the
sphere. A crease intersects the sphere on a point, and a sector intersects the
sphere at an arc.

A basic result of flat origami vertices, known as Maekawa’s Theorem [KT88]
is that the difference between the number of mountain and valley creases at
a flat-foldable vertex is always two. For a degree-4 vertex, this means one of
the creases is a mountain while three are valleys, or vice-versa. And, as stated
before, if we observe from a different side of the paper, mountain(s) will become
valley(s) and vice versa. In this paper, we flip the paper until only one crease is
the mountain when we observe from the top. We will mark the corresponding
point of the mountain crease on the sphere as y4. In clockwise order, we mark
the following creases as y1, y2, and y3.

The four sectors are mapped as four arcs on the sphere. We name the arc
between y4 and y1 as α1, and then name the following arcs as α2, α3, and α4 in a
clockwise order. The lengths of these arcs are exactly the sector angles of these
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Figure 3: Annotated crease, under a mountain fold.

Figure 4: The folding process.

sectors. The range for sector angles is (0, π), which will be proved in Section 3.1.
Also, the conclusion of Section 3.3 (Equation (25)) indicates that this setting
also implies α2 ≥ α1. In this paper, we treat sector angles as given constants,
i.e., we study the variation of folding angles with fixed crease patterns.

The folding angles, however, need a more careful definition. We mark the
folding angle around crease y1, y2, y3, and y4 as γ1, γ2, γ3, and γ4, respectively.
Figure 3 shows how the folding angle for crease y4 is defined, exemplifying how
other folding angles are defined. We treat the sector at the counterclockwise
side ( right side if you view the vertex from the top) as the reference plane. Then
the sector at the clockwise (or left) side is seen as bent, or deviated, from the
reference plane. In this case, α1 is bent down (or, counterclockwise, if we view
from the crease to the vertex) from the plane where α4 resides. In this paper, we
consider a clockwise bending as a positive folding angle, and a counterclockwise
bending as a negative folding angle. This means that the mountain will have a
negative folding angle and the valleys will have positive folding angles.

It should be noticed, that the range for folding angles is [−π, π] to avoid
letting the paper intersect with itself. And, for a rigid folding of a degree-4
flat-foldable vertex, because the degree of freedom among the folding angles is
1 [Hul20], we may say that any folding angle is a function of any other folding
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angle. For g : γa 7→ γb, where γa and γa are arbitrary folding angles, its domain
and range are both [−π, π]. Figure 4 shows how folding angles continuously
change.

However, after abstraction, it is very common that folding angles could be
represented by a value beyond this range, which is caused by the periodical
nature of rotation. If we ignore the limitation imposed by the definition of
origami, that the paper cannot intersect with itself, and let the folding angle
be x at a given crease, we may also say that this crease is folded x + 2nπ,
where n ∈ Z. Notably, if 0 < x < π, the alternative expression x − 2π (with
magnitude 2π−x) is especially confusing, because it is exactly the complement
of the desired arc on a sphere. Readers may frequently feel they discover a
counter-example or an extra solution not mentioned in this paper if they forget
that the folding angles and related arcs cannot be longer than π due to the fact
that a paper cannot intersect with itself.

For the remainder of this paper, I will use origami to refer to degree-4 rigid
flat-foldable origami.

2 The question

In 1976 David Huffman [Huf76] found that one pair of opposite creases will have
the same folding angle, while the folding angles for the other pair will have the
same value but opposite signs. That is, γ1 = γ3, γ2 = −γ4. It is a simple and
beautiful result. For adjacent angles, we also have a somehow beautiful formula
(which has been discovered by several researchers, such as [LMH16]):

−
tan γ3

2

tan γ4

2

=
tan γ1

2

tan γ2

2

=
sin α2+α1

2

sin α2−α1

2

.

Noticing that α1 and α2 are indeed constant for a given crease pattern, we
may say that tan 1

2γ1 and tan 1
2γ2, as well as tan

1
2γ3 and tan 1

2γ4, have a simple
linear relationship. However, what makes this formula specifically confusing is
the geometric meaning of the tangent value of half angles—why does half angle
matter?

In fact, the original formula that people discovered through geometric means
is quite complex (see Equation (24)). However, by substituting with half angles,
the equation is dramatically simplified. Taking the tangent of half the folding
angles also simplifies several other equations in the field of rigid origami, e.g.,
[FHR22]. This lets us suspect that the half-angle may indicate an in-depth
essence of this field. In this paper, we aim to give a geometrical illustration
for this equation, though, unfortunately, this grand goal is still not presently
reached.

In what follows, we construct a proof for the relationship between opposite
folding angles that seems to be simpler than proofs that appear in literature.
In addition we prove a lemma that reveals some geometrical significance of the
half-angles, though it is still unclear why it would appear in the relationship
between adjacent folding angles.
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Figure 5: A nearly flat-folded vertex, allowing the relationship among sector
angles to be obvious.

3 Existing Literature

We will need to use two basic theorems from flat origami, called the Kawasaki’s
and Maekawa’s Theorems (see [KT88] and [Hul20]). For completeness, we pro-
vide their proofs here.

3.1 Sector Angles: Kawasaki’s Theorem

Theorem 3.1. Opposite sector angles in a flat-foldable degree-4 vertex sum up
to π. That is, α1 + α3 = α2 + α4 = π.

Proof. (from [Lan18]) Consider a vertex that is fully flat-folded. That is, the
folding angles γi are all π or −π, and all sectors are coplanar, like in Figure 5.
Suppose someone is traveling on the edge of the paper, starting at y1. She travels
counterclockwise for α2, then arrives at y2; after that, she travels clockwise for
α3, arriving at y3... and, finally, she comes back to y1, with a total displacement
of 0. It is, thereby, geometrically obvious that

α1 − α2 + α3 − α4 = 0. (1)

In other words,
α1 + α3 = α2 + α4. (2)

Given that the paper was flat before folding, α1 + α2 + α3 + α4 = 2π. Solving
this equation system, we have

α1 + α3 = α2 + α4 = π. (3)
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Figure 6: A nearly flat-folded vertex that is cut off by a plane.

3.2 Maekawa’s Theorem

Theorem 3.2. The difference between the number of mountains and the number
of valleys in a flat-foldable vertex must be 2.

Proof. (from [Hul94]) Suppose the vertex has n total creases with m mountains
and v valleys. therefore, n = m + v. Let a plane intersect with all the creases
without intersecting the vertex. The intersection forms a polygon with n sides,
and each as shown in Figure 6. The sum of internal angles of n polygon is (n−
2)π. When the vertex is fully flat-folded, the internal angles around mountain
creases will be 2π, and the internal angles around valley creases will be 0. So
the sum of internal angles is also 2mπ + 0v. Solving these equations, we will
have v − 2 = m.

3.3 Opposite Folding Angles

Theorem 3.3. The opposite folding angles in a rigid folding of a degree-4 flat-
foldable vertex have the same magnitude.

Specifically, because we have 3 positive angles and 1 negative angle by
Maekawa’s Theorem, one opposite pair of the folding angles will be equal while
the other pair will have equal magnitudes but opposite signs. A spherical
trigonometry proof can be found in the literature [Lan18], which follows.

Proof. As shown in Figure 7, connect y4 and y2 by line segment ζ. Then, in
the triangle △y2y3y4, considering the spherical cosine law [BEG99, p. 348], we
have

cos(ζ) = cos(α3) cos(α4) + sin(α3) sin(α4) cos(π − γ3). (4)

And, for the same reason, in the triangle among y2, y4, and y1, we have

cos(ζ) = cos(α1) cos(α2) + sin(α1) sin(α2) cos(π − γ1). (5)
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Figure 7: a vertex with ζ that connects y2 and y4. Several angles around y4 are
emphasized for clarity of proof in section 3.4. If These labels cannot satisfy you
and you need more information, please refer to Figure19 in the appendix.

Notice, by Equation (3), α1 = π − α3, and α2 = π − α4. Substituting them
gives,

cos(α3) cos(α4) + sin(α3) sin(α4) cos(π − γ3)

= cos(π − α3) cos(π − α4) + sin(π − α3) sin(π − α4) cos(π − γ1)

Simplifying the equation using the periodical nature of sine and cosine functions,
we have

cos(π − γ3) = cos(π − γ1). (6)

Considering the range of folding angles is [−π, π],

γ3 = ±γ1. (7)

The same argument also applies to γ2 and γ4. Because there must be three
positive and one negative folding angles, one pair will have the opposite signs
and the other pair will have the same sign. In our particular notation, γ4 is
negative while γ1, γ2, and γ3 are positive, so γ1 = γ3 and γ2 = −γ4.

Though this proof is short and straightforward, a more visual and geomet-
rical proof is possible using the Gauss map, as we will see in Section 4.1.
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3.4 Adjacent Folding Angles

Theorem 3.4. The following equation that relates adjacent folding angles and
adjacent sector angles in a rigid folding of a flat-foldable, degree-4 vertex holds:

tan γ1

2

tan γ2

2

=
sin α2+α1

2

sin α2−α1

2

.

Proof. (from [Lan18]) As shown in Figure 7, let ζ1 = ∠y2y4y1, and ζ2 =
∠y2y4y3. Considering the definition of folding angle that was stated in Sec-
tion 1.2, the magnitude of folding angle γ4 can be represented as ζ1 + ζ2 − π.
This gives us

− sin γ4 = sin ζ1 cos ζ2 + sin ζ2 cos ζ1 (8)

By the spherical sine and cosine law [BEG99, p. 348], we have

sin ζ1
sinα2

=
sin γ1
sin ζ

(9)

sin ζ2
sinα3

=
sin γ3
sin ζ

(10)

cos ζ1 sinα1 sin ζ = cosα2 − cosα1 cos ζ (11)

cos ζ2 sinα4 sin ζ = cosα3 − cosα4 cos ζ. (12)

Isolating sin ζ1, sin ζ2, cos ζ1, and cos ζ2 from the equations above, we have

sin ζ1 =
sinα2 sin γ1

sin ζ
, (13)

sin ζ2 =
sinα3 sin γ3

sin ζ
, (14)

cos ζ1 =
cosα2 − cosα1 cos ζ

sinα1 sin ζ
, and (15)

cos ζ2 =
cosα3 − cosα4 cos ζ

sinα4 sin ζ
. (16)

Utilizing results of Theorem 3.1 and 3.3, we can eliminate variables α3, α4, γ3,
and γ4:

sin ζ1 =
sinα2 sin γ1

sin ζ
, (17)

sin ζ2 =
sinα1 sin γ1

sin ζ
, (18)

cos ζ1 =
cosα2 − cosα1 cos ζ

sinα1 sin ζ
, and (19)

cos ζ2 = −cosα1 − cosα2 cos ζ

sinα2 sin ζ
. (20)
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Substituting them into Equation (8), we have

sin γ2 =
sinα2 sin γ1

sin ζ

cosα1 − cosα2 cos ζ

sinα2 sin ζ
− sinα1 sin γ1

sin ζ

cosα2 − cosα1 cos ζ

sinα1 sin ζ
.

(21)
Simplifying this equation, we will get

sin γ2 = − sin γ1
(cos ζ + 1)(cosα2 − cosα1)

sin2 ζ
. (22)

Multiplying both the numerator and denominator by cos ζ−1, then considering
the Pythagorean identity, we can simplify it as

sin γ2 = − sin γ1
cosα2 − cosα1

1− cos ζ
. (23)

Then by substituting cos ζ from Equation (5), we eventually end up with this
Frankenstein equation:

sin γ2 = − sin γ1
cosα2 − cosα1

1− (cosα1 cosα2 − sinα1 sinα2 cos γ1)
. (24)

However, magically, once we employ the Weierstrass substitution, the following
linear relationship that is too simple to be not arbitrary appears in front of us:

tan γ1

2

tan γ2

2

=
sin α2+α1

2

sin α2−α1

2

. (25)

And, given the conclusion of Section 3.3, γ3 and γ4 also have a similar
relationship.

3.5 Gauss Map

For a curve C on a 2D surface in 3D space, a Gauss map G : C → S2 is a
function that maps every point on C to a unit vector orthogonal to the surface
at that point. Letting the vector’s initial point be the origin will enable us
to represent this vector by a point on the unit sphere S2. If the curve C is
differentiable, then the mapped curve C ′ = G(C) will form a continuous curve
on the unit sphere, and, if C is closed, the mapped curve C ′ will also be closed.

It might become tricky when the curve is not differentiable - for example,
when the curve passes through a sharp corner, such as a crease line. In this
case, we define the map of this point as the shortest path between the mapped
points of the point “right before” and “right after” this point. (Limits will be
used in the formal definition, of course.) On the one hand, it maintains the
continuity of the image curve C ′ by the shortest path; on the other hand, all
points on this path are orthogonal to the sharp corner, which does not violate
the definition of the Gauss Map.
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Figure 8: View from the side, so that crease y1 and vertex O overlapping.

3.5.1 Gauss Map for Degree-4 Vertex

In this paper, we pay attention to the Gauss Map of a closed curve around our
rigidly folded vertex. Obviously, a sector will be mapped as a point, because the
sector is flat, and the creases will map to line segments that connect them. Given
there are 4 sectors and 4 creases, the Gauss map image will form a quadrilateral
shape.We accordingly name the map of four sectors as A1, A2, A3, and A4,
respectively, and the map of four creases as Γ1, Γ2, Γ3, and Γ4, respectively.

Figure 8 shows how the mapping looks from the side. In this particular
graph, we view it from a point on the crease y1 and look towards the vertex.
The sectors α1 and α2 are mapped to points A1 and A2, respectively, and the
arc Γ1 connects point A1 and A2 because crease y1 borders sectors α1 and α2.
From this graph, you may easily see the two pink angles, ∠γ1 and ∠A1OA2

have the same value: A1O and α1 are perpendicular, so ∠η+ γ1 = π
2 ; A2O and

α2 are perpendicular, so ∠η + ∠A1OA2 = π
2 . Because Γ1 is an arc on a unit

sphere, its length is exactly the size of ∠A1OA2 expressed in radians. So we say
that Γ1 = ∠A1OA2 = γ1. A similar argument applies to every folding angle, so
Γi = ∠γi for all i = 1, 2, 3, 4.

For Sector angles, the situation is a little bit complex. As Figure 9 shows,
due to different relative positions, when we apply the similar technique we used
in the paragraph above, ∠A1A2A3 = π − α2, but ∠A3A4A1 = α4. Noticing
Theorem 3.1 indicates that π − α2 = α4, we have ∠A1A2A3 = ∠A3A4A1. The
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Figure 9: View from the top, so in the left picture A2 and vertex O are over-
lapping, and in the right picture A4 andO are overlapping.

same process allows us get ∠A2A3A4 = ∠A4A1A2.
And, as shown in Figure 10, the Gauss map image C ′ will be a bow tie-ish

shape, i.e., a pair of opposite sides will cross each other, when it is neither fully
folded nor flat. We will talk about its cause and implication in the following
section.

When the paper is not folded at all, then all the surfaces face straight up,
causing the Gauss Map to concentrate on one point, as shown in the right part
of Figure 11.

When the paper is fully folded, then sector α2 and α4 face straight up, while
α1 and α3 face straight down. They will concentrate at the north and south
poles. Then, Γis become half-circles orthogonal to the corresponding ray yi,
respectively. Consequentially, the Gauss Map becomes a combination of two
spherical lunes, as shown in the left part of Figure 11.

3.6 Gauss Curvature

It is trivial that, for a closed curve on a flat surface, the area enclosed by its
Gauss map image curve C ′ is zero. We define the ratio between the area enclosed
by the original curve and the image curve to be the curvature of the surface at
that point. Indeed, this ratio reflects a property of the surface. The Gauss
Curvature K of a surface at a point P is defined as

K(P ) = lim
C→P

E(C ′)

E(C)

where C is a closed curve that encloses P and C ′ is the Gauss Map of C. E(C)
and E(C ′) represents the area, or spherical excess, enclosed by C and C ′ on their
respective surfaces. limC→P means that every point on C is close enough to P .
A circle (or, for non-flat surface, the intersection of a sphere and the surface)
with center P and radius r → 0 is a curve that satisfies this requirement.
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Figure 10: the Gauss Map around vertex, with notations that will be extensively
used below.

Figure 11: Two degenerate cases for the Gauss Map.
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Figure 12: a sphere and its Gauss map

Moreover, if the area is enclosed by a clockwise curve, we say it is positive;
while if the area is enclosed by a counterclockwise curve, we say its area is
negative. For example, the area of the two triangles that made up the bow tie
in Figure 10, must have opposite signs.

A sphere with radius r, for example, has a positive curvature 1
r2 , and a

saddle has a negative curvature.

3.6.1 Gauss Curvature of a Sphere

In this section, I will prove the Gauss curvature of a sphere with radius r is 1
r2 .

Consider an arbitrary point P on a sphere with center O and radius r, as
shown in Figure 12. Let a plane be perpendicular to line PO and intersect with
the plane at a circle c. This plane also intersects with line PO at point H. Let
h denote the distance between O and H.

Consider an arbitrary point A on the circle c. By trigonometry in triangle
△HOA, angle ∠POA = ∠HOA = arccos(h/r). Then the spherical cap enclosed
by circle c on sphere O has area E = 2πr2(1− cos(∠POA)) = 2πr2(1− h/r).

Let there be a unit sphere with center O′ and radius 1. Using the Gauss map
to map P , c, and A to this sphere, we have their image P ′, c′ and A′. Because
vector OA is exactly perpendicular to the sphere O at point A and vector OP
is exactly perpendicular to the sphere O at point P , O′A′ is parallel to OA,
and O′P ′ is parallel to OP , which means that ∠POA = ∠P ′O′A′. Then by the
same argument, the spherical cap enclosed by circle c′ on sphere O′ has area
E′ = 2π(1− cos(∠POA)) = 2π(1− h/r).

When h approximates r, circle c will approximate P . Therefore, the Gauss
curvature of sphere O at point P is
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Figure 13: the Gauss Map, with the direction of the curve clearly marked.

K(P ) = lim
h→r

E′

E
=

2π(1− h/r)

2r2π(1− h/r)
=

1

r2
.

3.6.2 Gauss’ Remarkable Theorem and Origami

Remarkably, Gauss’s Remarkable Theorem (Gauss’ Theorema Egregium) states
that the Gauss curvature of a surface is invariant under a local isometry [ONe66,
Theorem 5.4, p. 273]. Isometries, defined as distance-preserving deformations,
include origami. Therefore, the Gauss curvature of every vertex discussed in
this paper is always 0, i.e., the area enclosed by the mapped curve of any curve
that is on the paper and encloses the vertex should be 0.

The bow tie, as shown in Figure 10, seemingly have a non-zero area. How-
ever, we must consider that the signs of the two triangles are opposite. As
shown in Figure 13, one triangle in the bow tie is enclosed by a clockwise curve,
while another is enclosed by a counterclockwise curve. This indicates that the
sign of their area is the opposite. This allows the bow tie to have a zero area,
and Gauss’s Remarkable Theorem does guarantee a zero area, implying so the
magnitude of the areas of the two triangles is the same.

In the degenerate case where the paper is fully folded, we can use Theorem
3.1 to easily prove that the two spherical lunes have the same area in magnitude.
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4 Original works

4.1 A geometrical proof for opposite folding angles using
Gauss Map

As shown in Figure 13, we name the intersection of Γ1 and Γ3 as θ. In Section
3.5.1 we proved that ∠A2A3A4 = ∠A4A1A2 and ∠A1A2A3 = ∠A3A4A1. We
also have ∠A4θA1 = ∠A2θA3, because they are opposite angles. These are suf-
ficient conditions for spherical triangle △A4A1θ and △A2A3θ to be congruent.
(since AAA triangle relations give congruent triangles on the sphere). Then
|Γ4| = |Γ2|, and |Γ1| = |Γ3| because |A4θ| = |A2θ| and |A1θ| = |A3θ|. So,
Theorem 3.3 is proved.

Actually, the bow tie is fully symmetric through the great cricle that contains
the midpoint of A1A3 and A2A4.

4.2 Colinearity of half angles on Gauss Map

The following theorem was first stated by David Huffman [Huf76], but without
a proof. Later references to this result, such as [Lan18] also do not include a
proof. Because of its potential importance for understanding half angles in rigid
origami vertices, we provide a proof here.

Theorem 4.1. In the Gauss map image of a rigid folding of a degree-4 vertex,
the midpoints of bow tie sides Γ1, Γ2, Γ3, and Γ4 are colinear.

As we defined before, Γ1, Γ2, Γ3, and Γ4 are the corresponding arcs of
folding angles γ1, γ2, γ3, and γ4, respectively, on the Gauss sphere. Therefore,
the midpoints of these arcs are equivalent to bisectors of folding angles. Their
colinearity may facilitate a direct proof of the half-angle formula.

To prove this theorem, we need 2 lemmas.

Lemma 1. For a spherical triangle △ABC with all sides shorter than π and a
line e intersecting it but not tangent to it, |e,A| = |e,B| = |e, C|, if and only if
e passes through two midpoints of the side of △ABC.

Here |e,A| denotes the shortest distance from a point on the great circle e
to the point A.

Proof. First, we will prove that if e passes through two midpoints of the side of
△ABC then |e,A| = |e,B| = |e, C|.

Let the midpoint of AB and AC be P and Q, respectively, then let e be the
great circle (line) passing through PQ. Let three lines be perpendicular with
e and pass through B, A, and C, respectively. Name the intersection of these
lines and e as M , L, and N , respectively. This set up, as shown in Figure 14,
means that|B, e| = |MB|, |C, e| = |CN |, and |A, e| = |AL|

In △QNC, by the spherical Law of Sines we have sin∠Q
sin |NC| = sin∠N

sin |QC| , or

sin |NC| = sin∠Q sin |QC|
sin∠N . Given ∠N = π

2 ,

sin |NC| = sin∠Q sin |QC|. (26)
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Figure 14: Set up for the first half of the proof of Lemma 1, assuming P and Q
are midpoints.
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By the same argument, in △MPB and △APL, we have

sin |MB| = sin∠P sin |PB|, (27)

and
sin |AL| = sin∠P sin |AP |, (28)

respectively.
Now, in △APQ by the sine rule we have sin∠P

sin |AQ| =
sin∠Q
sin |AP | . Alongside with

|AQ| = |QC| and |AP | = |PB|, this gives us sin∠P sin |PB| = sin∠Q sin |QC|.
Plugging in Equations (26) and (27), we have

sin |MB| = sin |NC|. (29)

We may notice that ∠APQ = ∠BPM because they are a pair of vertical
angles. Besides, considering |BP | = |AP |, and Equations (27) and (28), we
have

sin |AL| = sin |MB|. (30)

Equations (29) and (30) give us sin |MB| = sin |NC| = sin |AL|. Noticing

|PB| ≥ |e,B| = |MB|, and |PB| = |AB|
2 ≤ π

2 , we have 0 ≤ |MB| ≤ π
2 .

Similarly, 0 ≤ |NC| ≤ π
2 and 0 ≤ |AL| ≤ π

2 . Because sine is a strictly monotone
function within the range 0 to π

2 , we have |MB| = |NC| = |AL|. This completes
our proof of the first half of the lemma.

Now, we will prove that if |e,A| = |e,B| = |e, C| then e passes through two
midpoints of the side of △ABC, as shown in Figure 15

Without loss of generality, we assume e passes through AB and AC at P and
Q, respectively. Let three lines be perpendicular with e and pass through B, A,
and C, respectively. Name the intersection of these lines and e as M , L, and
N , respectively. This set up, as shown in Figure 15, means that |B, e| = |MB|,
|C, e| = |CN |, and |A, e| = |AL|.

In △QNC, by the sine rule, we again have sin∠NQC
sin |NC| = sin∠N

sin |QC| . Given

∠N = π
2 ,

sin |QC| = sin |NC|
sin∠NQC

. (31)

Similarly, in △AQL, we have

sin |AQ| = sin |AL|
sin∠AQL

. (32)

Because |AL| = |NC| and ∠AQL = ∠CQN , we have sin |AQ| = sin |QC|.
In the case that |AQ| ≤ π

2 and |QC| ≤ π
2 , because sin is a strictly monotone

function within the range 0 to π
2 , we have |AQ| = |QC|, implying Q is the

midpoint of AC.
In the case that one of |AQ| is less than or equal to π

2 , and the other is greater
than or equal to π

2 but less than or equal to 3
2π, we have |AQ|+ |QC| = π, which

means that |AC| = π, contradict with the premise of this lemma.
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Figure 15: Set up for the second half of the proof of Lemma 1, which does not
assume P and Q are midpoints.

By the same argument, we can prove that, in the case △ABC exists, P is
the midpoint of AB. This completes our proof of the second direction, and thus
completes the whole proof.

The next lemma is an old spherical geometry result stated in [Tod14], with
proof, but with a flaw. Therefore we include a revised statement and proof
here. This is not the strongest statement we could prove, but is sufficient for
supporting the grand goal of this paper.

Lemma 2. Let △ABC be a spherical triangle on a unit sphere. Then there
exists a small (i.e., not great) circle, called Lexell’s circle, such that for any
point D on Lexell’s circle and on the same side of the great circle made by
arc BC as A, we have that the spherical area of △DBC equals the area of
△ABC. The Lexell’s circle is defined by point A, the antipodal point of B, and
the antipodal point of C.

Proof. Let there be a spherical triangle ABC. Then let the antipodals of B
and C be B′ and C ′, respectively. Any great circle that passes through B
must also pass through B′, so do C and C ′. We also mark the antipodal
point of A as K. Besides, Let P be the center of circumcircle of △AB′C ′,
i.e., |PA| = |PB′| = |PC ′|, as shown in Figure 16.

We are going to prove that every triangle with it apex on the Lexell’s circle
has the same area, 2∠PB′C ′ − π. Let’s use △ABC as an example.
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Figure 16: set up of Lemma 2.

Let the area of △ABC be

E = ∠BAC + ∠ABC + ∠ACB − π. (33)

We aim to prove that E = 2∠PB′C ′ − π. ∠AC ′B′ = ∠BC ′K because they
are opposite angles. ∠BC ′K = ∠BCK because they are both the dihedral
angle between the plane defined by B,C, C ′ and the plane defined by K, C, C ′.
Now, because ∠BCK and ∠ACB supplementary angles, ∠BCK = π−∠ACB.
Combining all these steps, ∠AC ′B′ = π − ∠ACB. By the same argument,
∠AB′C ′ = π − ∠ABC. We also have ∠BAC = ∠B′AC ′ because they are
opposite angles.

Substituting these into Equation (33), we have

E = ∠BAC + ∠ABC + ∠ACB − π

= ∠B′AC ′ + (π − ∠AB′C ′) + (π − ∠AC ′B′)− π (34)

= ∠B′AC ′ − ∠AB′C ′ − ∠AC ′B′ + π. (35)

In isosceles triangle △B′C ′P ,

∠B′C ′P =
∠B′C ′P + ∠B′C ′P

2
=

∠C ′B′P + ∠B′C ′P

2
. (36)

Next we chase some angle in Figure 16 to get
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∠C ′B′P + ∠B′C ′P

2
=

∠AB′C ′ − ∠AB′P + ∠AC ′B′ − ∠AC ′P

2

=
∠AB′C ′ + ∠AC ′B′ − ∠BAC

2
. (37)

Combining Equation (36) and 37, we have

∠B′C ′P =
∠AB′C ′ + ∠AC ′B′ − ∠BAC

2
. (38)

Noticing that the numerator of the right-hand side is similar to the right
hand side of the Equation (35), we may have

∠AB′C ′ + ∠AC ′B′ − ∠BAC

2
=

π − E

2
. (39)

Substitute in Equation , we have

∠B′C ′P =
π − E

2
. (40)

Isolating E from the equation (or, in other word, solving the equation for
E, we arrive

E = 2∠PB′C ′ − π. (41)

For any point D on the sphere, it satisfies |PD| = |PC ′| = |PB′|, then
by the same argument, the area of triangle △DBC = 2∠PB′C ′ − π = △ABC.
This means that every point on Lexell’s circle can serve as an apex for a triangle
that has the same area as △ABC and share the same base BC.

Theorem 4.2. For spherical triangles, △ABC and △DBC with all sides shorter
than π that share the same base and non-zero overlapping area, the midpoints
of their distinct sides are colinear if they have the same area.

Proof. Assume we are given triangles △ABC and △DBC as stated in the The-
orem. Let B′ and C ′ be antipodal to B and C, respectively. Then by Lemma
2, A, D, B′, and C ′ are on a small circle l.

Let the line that crosses the midpoint of AB and AC be e. By Lemma
1, |e,A| = |e,B| = |e, C|. Because B′, and C ′ are antipodal to B and C,
respectively, |e,B| = |e,B′|, and |e, C| = |e, C ′|. Therefore, |e,A| = |e,B′| =
|e, C ′|. This means that the plane that e resides on is parallel to the plane that
l resides on, which further means that |L, e| is a constant for all L ∈ l, including
D. This gives us |e,D| = |e,A|, and then |e,D| = |e,B| = |e, C|.

Given the plane that e resides on is parallel to the plane that l resides on,
if we divide the sphere by e, all L ∈ l, including A and D will be in one
hemisphere. Noticing line segment AB crosses e, we can say that A and B are
on two different hemispheres. This means D and B are on two different side of
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Figure 17: the Gauss Map, with elements mentioned in Theorem 4.1 clearly
marked.

e, leading to the conclusion that e intersects with line segment DB. Then by
Lemma 1, the midpoint of DB and DC is on e. So the midpoint of AB, AC,
DB, and DC are all on e, which completes our proof.

Now, we are finally eligible to prove Theorem 4.1.
Theorem 4.1 (restate) In the Gauss map image of a rigid folding of a degree-4
vertex, the midpoints of bow tie sides Γ1, Γ2, Γ3, and Γ4 are colinear.

Proof. When the paper is neither flat nor fully folded, as in Figure 10, connect
A1 and A3 in the Gauss map, as Figure 17 shows. For convenience, we name
the intersecting point of Γ1 and Γ3 as θ. As mentioned in Section 3.6.2, the two
parts of the bow tie, △θA2A3 and △θA1A4, have the same area. Adding with
the shared part θA1A3, then△A1A3A4 and△A1A3A2 have the same area, same
base, and non-zero overlapping area, fulfilling conditions required in Theorem
4.2. This means that the midpoints of Γ1, Γ2, Γ3, and Γ4 are colinear.

When the paper is fully folded, as discussed in Section 3.5, the Gauss Map
becomes a combination of spherical lunes, as shown in Figure 11. Then the
midpoint of Γ1, Γ2, Γ3, and Γ4 are all on the equator, and, therefore, colinear,
as shown in Figure 18.

When the paper is flat, the Gauss Map becomes a point, as shown in Figure
11, where all A1, A2, A3, A4, Γ1, Γ2, Γ3, and Γ4 are all overlapping together,
so do those midpoints. So the midpoints are also colinear, as shown in Figure
18.
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Figure 18: Two degenerate cases for Theorem 4.2.

5 Conclusion

In this paper, I outlined existing studies for the relationship among folding an-
gles and sector angles, then gave a simpler proof for an established relationship,
and proved a theorem, which was mentioned in the literature but seemingly
never proved, relating half-angles of four folding angles. We also have several
other failed attempts that leave nothing worth documenting. Until now, we are
still unsure how this may help us understand the relationship between adjacent
folding angles. One possible path for breakthrough is to relate the half-angles
of the sector angles, which appear on the other side of the equation.
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Figure 19: Figure7 with more details.

6 Quick Reference

Listed below are some pieces of information you may want to have in hand when
you read through the paper.

6.1 Extra Graph

Figure 19 is Figure7 with more details as requested. It is not provided in the
original place because too much information make it look chaotic.

6.2 Definitions

Here we list some definitions and terminologies scattered around the paper.
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6.2.1 Origami

• Origami is a 3D isometric deformation of a plane without intersection
with itself.

• Flat-foldable means means the origami can have all of its creases be
folded all the way flat.

• Rigid, when the folded surface is either flat (sector/facet) or not differ-
entiable (crease and vertex).

• Degree-4, when 4 creases intersect at one point (vertex).

6.2.2 Parts

• Vertex: the point that the 4 creases meet. Named O.

• Crease: a non-differentiable part that forms a ray. There are 4 sectors
around a vertex, named yi in clockwise order. yi sometimes also refers
to its intersection point with the unit sphere. It is mapped as Γi in the
Gauss map. See Figure 2.

• Folding angle around a crease: how much the paper is bent around this
crease. The folding angle around crease yi is named γi. The folding angle
*is not* the angle between sectors surfaces; its magnitude is the difference
between π and the angle between adjacent sectors. See Figure 3.

• A folding angle is a valley, if it looks like a valley from the top; it is
a mountain if it looks like a mountain from the top. Formally, it is a
valley if the folding angle is positive, and a mountain if it is negative. It
is positive when the left part of the paper is bent up if you look from the
opposite direction of the ray (look from the side), and negative when the
left part of the paper is bent down.

• Sector: a flat part of the paper, bounded by creases. There are 4 sectors
around a vertex, named αi in clockwise order. αi sometimes also refers to
its intersection arc with the unit sphere. It is mapped as Ai in the Gauss
map.

• Sector angle for a sector: the angle between the two rays bounds this
sector. It is the same as the length of αi due to the nature of the unit
sphere.

• Gauss Map for a curve C on a 2D surface in 3D space: For every point p
on the curve C, map p to the unit vector that is normal to the surface at
p and has initial point O. Then the terminal point of the vectors will form
a set on the unit sphere. In performing the Gauss map to a rigid origami
surface, when the magnitudes of folding angles are between 0 and π, the
map will form a bowtie-ish shape, as shown in Figure 8. In the case that
all folding angles are 0 or ±π, we will have degenerate cases. See Figure
8 in the paper.
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Figure 20: A spherical cap with radius and polar angle marked.

6.2.3 Other Terminologies

• Line: a great circle. A great circle is a circle on the sphere that has the
greatest possible radius.

• Line segment: a segment of a great circle. it is the shortest path between
two points. It is usually not called arc to distinguish it from a segment of
a non-great circle.

• |l| refers to the length of line segment l. |AB| refers to the length of line
segment AB.

• |l, A| refers to the distance between line l and point A.

6.3 Quick Facts

This section listed some basic facts that are used in the paper without an in-
troduction or illustration. Most of them can be found by a simple web search
or in undergraduate textbooks such as [BEG99] or [Lan18].
Spherical Area

The area, or spherical excess, of a spherical triangle △ABC is

E = ∠A+ ∠B + ∠C − π

Area for spherical cap) As shown in Fig20, for a spherical cap on a sphere
with radius r and polar angle θ, its area is

E = 2πr2(1− cos θ)

Spherical Cosine Law

28



In a spherical triangle △ABC with side lengths a, b, and c, and opposite
angle A, B, and C, respectively,

cos a = cos b cos c+ sin b sin c cosA

Spherical Sine Law
In a spherical triangle △ABC with side lengths a, b, and c, and opposite

angle A, B, and C, respectively,

sinA

sin a
=

sinB

sin b
=

sinC

sin c

Addition Formula for Sine

sin(a+ b) = sin a cos b+ sin b cos a

Pythagorean identity

sin2(a) + cos2(a) = 1

Weierstrass Substitution (Tangent half-angle substitution)

sin(x) =
2 tan x

2

1 + tan x
2

, and

cosx =
1− tan x

2

1 + tan x
2

6.4 Theorems

This section listed all major results appeared in this paper.
3.1 Sector Angles: Kawasaki’s Theorem

Opposite sector angles in a flat-foldable degree-4 vertex sum up to π. That
is,

α1 + α3 = α2 + α4 = π

.
3.2 Valley-Mountain Pattern: Maekawa’s Theorem

The difference between the number of mountains and the number of valleys
in a flat-foldable vertex must be 2.
3.3 Opposite Folding Angles

The opposite folding angles in a rigid folding of a degree-4 flat-foldable vertex
have the same magnitude. That is,

γ2 = −γ4

γ1 = γ3

3.4 Adjacent Folding Angles
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The following equation that relates adjacent folding angles and adjacent
sector angles in a rigid folding of a flat-foldable, degree-4 vertex holds:

tan γ1

2

tan γ2

2

=
sin α2+α1

2

sin α2−α1

2

.

3.5.1 Gauss Map for Degree-4 Vertex
For all i = 1, 2, 3, 4,

Γi = γi

∠A1A2A3 = ∠A3A4A1 = α4 = π − α2

∠A2A3A4 = ∠A4A1A2 = α1 = π − α3

3.6.2 Gauss’ Remarkable Theorem
The total area of the Gauss map for a degree-4 flat-foldable vertex is 0; the

areas of the two triangles that the bowtie consists of are the same in magnitude
but opposite in sign.
4.1 Midpoint Collinearity Theorem

In the Gauss map image of a rigid folding of a degree-4 vertex, the midpoints
of bowtie sides Γ1, Γ2, Γ3, and Γ4 are colinear.
Lemma 1

For a spherical triangle △ABC with all sides shorter than π and a line e
intersecting it but not tangent to it, |e,A| = |e,B| = |e, C|, if and only if e
passes through two midpoints of the side of △ABC.
Lemma 2

Let △ABC be a spherical triangle. Then there exists a small (i.e., not great)
circle, called Lexell’s circle, such that for any point D on Lexell’s circle and on
the same side of the great circle made by arc BC as A, we have that the spherical
area of △DBC equals the area of △ABC. The Lexell’s circle is defined by point
A, the antipodal point of B, and the antipodal point of C.
Theorem 4.2

For spherical triangles, △ABC and △DBC with all sides shorter than π
that share the same base and non-zero overlapping area, the midpoints of their
distinct sides are colinear if they have the same area.
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